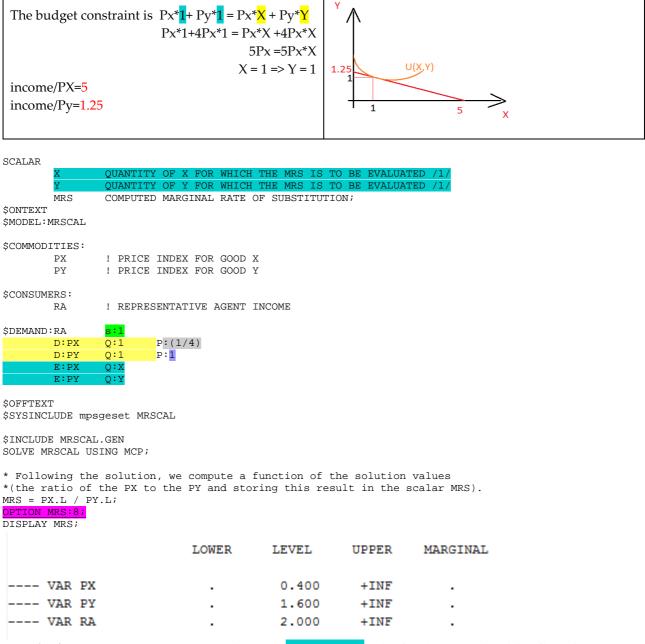
EXAMPLE 2: consumer optimization problem

We have agent, who has E: like Endowement X Quantity = 1 Y Quantity = 1 and spend his income on D: like Demand X Quantity = 1

Y Quantity = 1

Precision of MPSGE is 6 decimals by default. If we want to use other precision, we have to redefine it via OPTION.

Utility function is the Cobb-Douglas function $U(x,y)=X^{1/4*}Y$ or $U(x,y)=X^*Y^4$ with MRS=(1/4)/1 No production implies that X=const and Y=const => Prices are determined just by consumer demand. MRS(1,1) = y/4x = 1/4 = Px/Py describes endowment => X=Y and 4Px=Py



Conclusion: consumers income is the total **endowment**. The final prices should reflect the **calibration point** and MRS, when no producers.

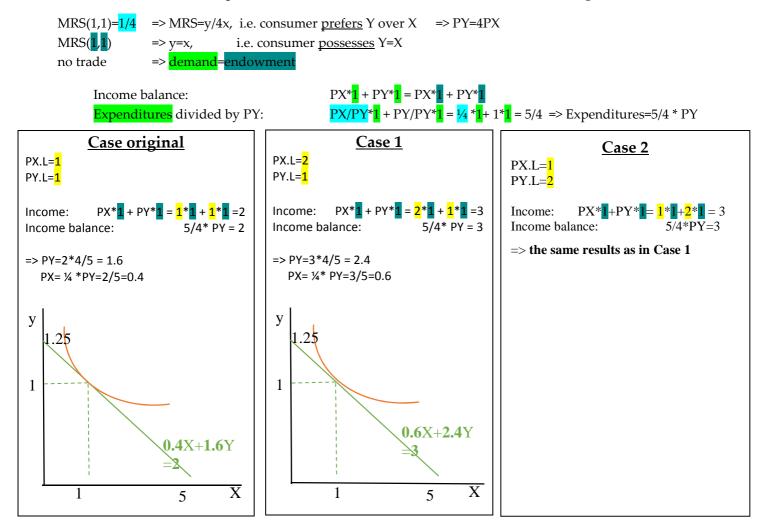
Supplement Material to EXAMPLE 2:

1) Compare alternative ways to normalize the model:

Case 1:	PX.L=2 and PY.L=1	Case 3:	PX.L=2 and PY.L=2
Case 2:	PX.L=1 and PY.L=2	Case 4:	RA.L=1

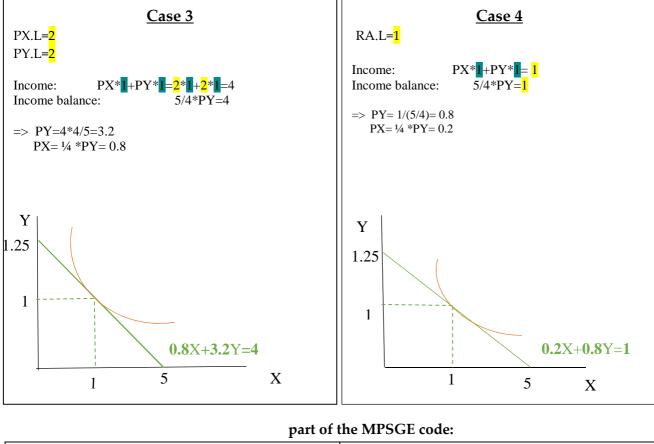
SOLUTION

Normalization is what the model assumes as a starting number. The original example assumes that all variables (except income) are normalized to 1 (this is the default setting in MPSGE).



part of the MPSGE code:

Case original	Case 1	Case 2		
\$SYSINCLUDE mpsgeset DEMAND	\$SYSINCLUDE mpsgeset MRSCAL	<pre>\$SYSINCLUDE mpsgeset MRSCAL PY.L=2;</pre>		
\$INCLUDE DEMAND.GEN SOLVE DEMAND USING MCP;	\$INCLUDE MRSCAL.GEN SOLVE MRSCAL USING MCP;	\$1.12, \$1NCLUDE MRSCAL.GEN SOLVE MRSCAL USING MC		
RESULT:	RESULT:	RESULT:		
VAR PX . 0.400 VAR PY . 1.600 VAR RA . 2.000	VAR PX . 0.600 VAR PY . 2.400 VAR RA . 3.000	VAR PX . 0.600 VAR PY . 2.400 VAR RA . 3.000		



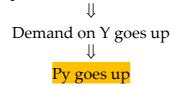
Case 3		Case 4				
<pre>\$SYSINCLUDE mpsgeset MRSCAL PX.L=2; PY.L=2; \$INCLUDE MRSCAL.GEN SOLVE MRSCAL USING MCP;</pre>		\$SYSINCLUDE mpsgeset MRSCAL RA.FX=1; \$INCLUDE MRSCAL.GEN SOLVE MRSCAL USING MCP;				
RESULT:		RESULT:				
VAR PX		0.800	VAR PX		0.200	
VAR PY		3.200	VAR PY		0.800	
VAR RA	•	4.000	VAR RA	1.000	1.000	1.000
			Since numeraire is RA (by default setting in MPSGE), normalization of this variable requires to fix it (i.e. RA.FX instead of RA.L)			

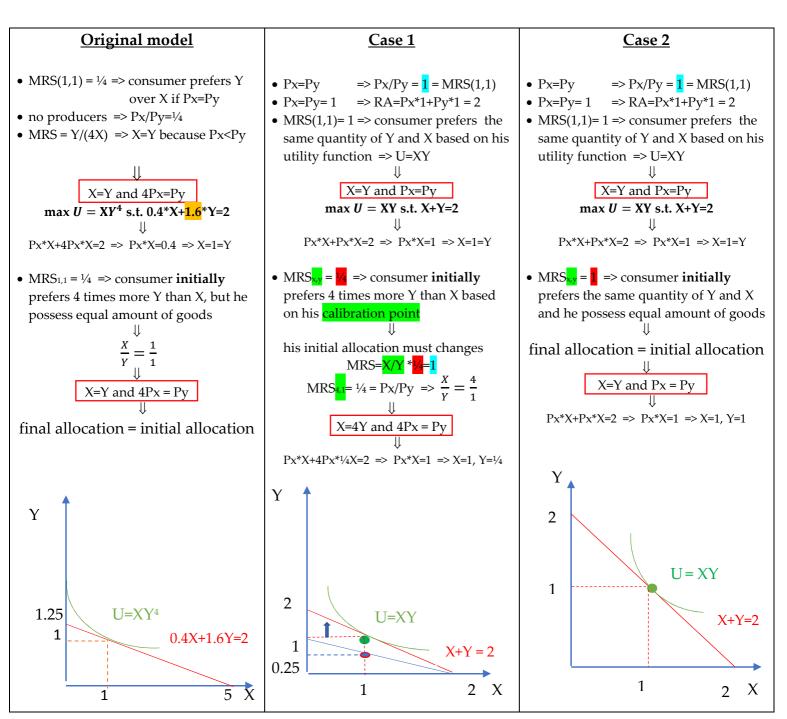
Conclusion: (i) Normalization of variables does not change variables in real terms, but only in nominal terms (similar to numeraire). Normalization only helps solver to find a solution. (ii) Different normalisations may generate the same results in nominal variables if their impact on values of variables is the same (like in Cases 1 and 2). (iii) Changing normalization of variables that represent values (like income) requires fixing that variable.

SOLUTION

Consumer has the same amount of goods (calibration point) in the original model,

but he prefers 4 times more Y than X





part of the MPSGE code:

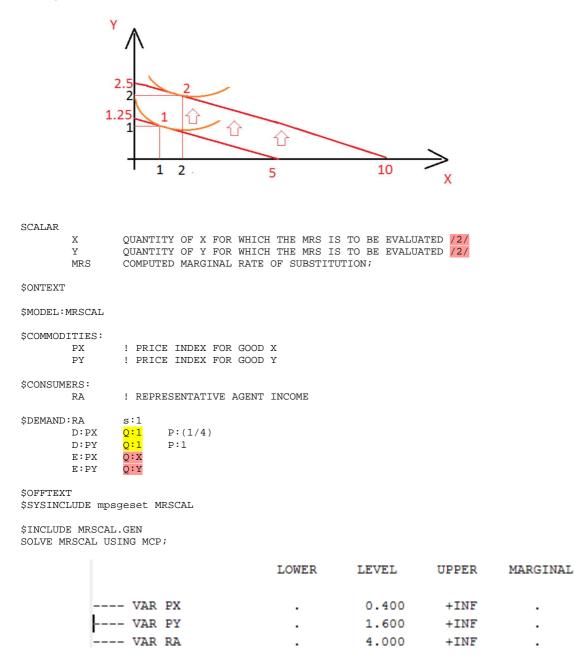
\$DEMAND:RA s:1	\$DEMAND:RA s:1	\$DEMAND:RA s:1
D:PX Q:1 P:(1/4)	D:PX Q:4 P:(1/4)	D:PX Q:1 P:1
D:PY Q:1 P:1	D:PY Q:1 P:1	D:PY Q:1 P:1
E:PX Q:1	E:PX Q:1	E:PX Q:1
E:PY Q:1	E:PY Q:1	E:PY Q:1
RESULT:	RESULT:	RESULT:
VAR PX 0.400		VAR PX 1.000
VAR PY 1.600	VAR PX 1.000	VAR PY 1.000
VAR RA 2.000	VAR PY 1.000	VAR RA 2.000
	VAR RA 2.000	

Conclusion: Equal prices can be obtained either through modification of (i) calibration point (Case 1) or (ii) MRS (Case 2). Both changes means modification of utility function.

Exercise 2A:

Show that the demand function is homothetic by uniform scaling of the x and y endowments (for instance 2). The resulting MRS should remain unchanged: MRS(2,2) = y/4x = 1/4 = PX/PY describes endowment, while MRS(1,1) describes preferred allocation.

The new budget constraint is 2+2 = PX*2*1 + PY*2*1, since income rescaling requires to rescale both side of the budget equation. Thus 4/PY = PX/PY * 2+ PY/PY * 2 =10/4 This gives us PY=8/5 =1.6



Conclusion: this is homothetic function, because only total income has changed (prices = const) after rescaling of endowment

Exercise 2B:

Modify the demand function calibration point so that the reference prices of both x and y equal unity.

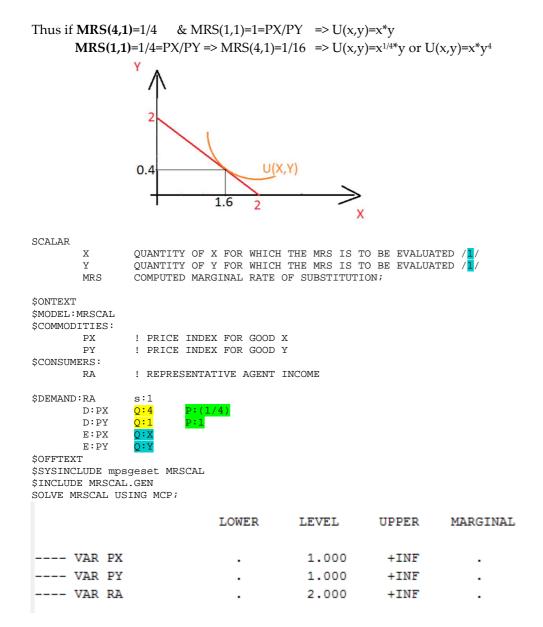
The relationship of initial prices (PX=1/4 and PY=1) is equal now to $MRS(\frac{4}{4},1)=1/4$ instead of $MRS(\frac{1}{4},1)=1/4$.

MRS=1/4 means that consumer prefers Y four times more than X. However, his preferred allocation is to buy X four times more than Y (while supply of both goods is the same). It gives 4*(1/4)=1, i.e. consumer finally prefers X=Y and his utility function becomes $U(x,y)=x^*y$.

MRS(**1,1**) = y/x = 1/1 =PX/PY, i.e. PX=PY We put this into budget constraint **2** = PX*1 + PY*1 = PX+PY = 2PX => **PX = 1** => **PY = 1**

MRS(4,1) = y/x = 1/4. This means that **X=4Y**. We put this into budget constraint: 2 = $PX^*X + PY^*Y = 1^*4y + 1^*y = 5y$

In order to get PX=PY=1 (budget line crosses horizontal and vertical lines in 2=2/1), we have to use y=2/5=0.4 and x=4*0.4=1.6.



Conclusion: Relationship between prices depends on supply and MRS, but not on calibration point